Monoclinic trans-2,5-Dimethyl-3-hexene-2,5-diol

By Hanno van der Wal and Aafje Vos
Laboratorium voor Chemische Fysica, Rijksuniversiteit Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

(Received 8 February 1979; accepted 2 April 1979)

Abstract. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}, M_{r}=144.22$, monoclinic, $\mathrm{C} 2 / \mathrm{c}$, $Z=8, a=10.354$ (3), $b=16.799$ (4), $c=11.014$ (3) $\AA, \beta=112.0(2)^{\circ}, V=1776 \AA^{3}, d_{x}=1.077 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \bar{\alpha})=0.71069 \AA, \mu(\mathrm{Mo})=0.081 \mathrm{~mm}^{-1}$. One of the two independent half molecules is disordered. Hydrogen bonds connect the molecules to form a threedimensional network.

Introduction. Crystals of trans-2,5-dimethyl-3-hexene-2,5-diol were grown by slow evaporation of the solvent ($6-14 \mathrm{~d}$) from a saturated solution in petroleum ether (313-333 K). The batch of crystals contained two modifications: (a) the orthorhombic hemihydrate studied by Ruysink \& Vos (1974), called II trans A; the accurate determination of the electron density distribution in this compound will be described in a separate paper (van der Wal \& Vos, 1979); (b) a monoclinic compound called II trans B; the structure determination of this compound is reported in the present paper.

The intensities of II trans B were collected on a CAD-4 diffractometer at 86 K , in essentially the same way as described for II trans A by van der Wal \& Vos (1979). Symmetry relations between the reflections and systematic absences indicated the space group to be Cc or $C 2 / c$. All independent reflections up to $\sin \theta / \lambda=0.9$ \AA^{-1} were measured at two different ψ values. During the data collection the intensities of three reference reflections decreased by 10% on average. For each of the 5480 independent reflections the weighted average of the two measurements was taken as $I_{o}(\mathbf{H})$, whose e.s.d. was calculated as $\sigma\left[I_{o}(\mathbf{H})\right] \stackrel{ }{=}\left[\sum_{i=1.2}\right.$ $\left.\sigma_{c}^{-2}(\mathbf{H}, i)\right]^{-1 / 2}$, where σ_{c} is the e.s.d. based on counting statistics. The distribution of the E values pointed to the space group $C 2 / c$. An approximate structure was found by the use of MULTAN (Germain, Main \& Woolfson, 1971). The cell contains a molecule a lying around the inversion center $(0,0,0)$ and a molecule β around $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$, the respective inversion centers coinciding with the centers of the $\mathrm{C}=\mathrm{C}$ double bonds. There are no water molecules. After isotropic refinement, Fourier syntheses showed β to be disordered. The two superimposed molecules are given in Fig. 1. For the solid
circles a population of 0.79 was found after refinement and for the open circles 0.21 . The plane through the open circles for $C(7), C(8)$ and $H(16)$ almost coincides with the ac plane. The corresponding plane through the solid circles is nearly perpendicular to ac. H atoms linked to C were found from difference maps and were taken into account in the refinement with $\mathrm{C}-\mathrm{H}=1.08$ \AA and with isotropic thermal parameters. H atoms linked to O were not found and thus not considered in the structure refinement. The function minimized was $Q(1)=\sum_{\mathbf{H}} w(\mathbf{H})\left[I_{o}(\mathbf{H})-K^{2} I_{c}(\mathbf{H})\right]^{2}$, with $[w(\mathbf{H})]^{-1}=$ $\sigma^{2}\left[I_{o}(\mathbf{H})\right]+0.0004 I_{o}^{2}(\mathbf{H})$ for the 4062 independent reflections with $I_{o}(\mathbf{H})>2 \sigma\left[I_{o}(\mathbf{H})\right]$. Scattering factors for C and O were taken from Cromer \& Mann (1968),

Table 1. Final positional parameters ($\times 10^{5}$)
Numbers in parentheses are the e.s.d.'s in the last digits. For numbering, see Fig. 3.

Fig. 1. The disorder of molecule β.
(C) 1979 International Union of Crystallography
and for H from Stewart, Davidson \& Simpson (1965). First, anisotropic refinement with reflections having $\sin \theta / \lambda<0.65 \AA^{-1}$ was carried out for α and the split atoms of β. Thereafter the parameters of β were fixed, whereas those of α were refined further with all 4062 independent reflections. This procedure was followed to make the low-order ($\sin \theta / \lambda<0.65 \AA^{-1}$) difference map for the study of the electron density of α as flat as possible around β. $R_{w}(I)=\sum_{\mathbf{H}} w(\mathbf{H})\left[I_{o}(\mathbf{H})-\right.$ $\left.I_{c}(\mathbf{H})\right]^{2} /\left[\sum_{\mathrm{H}} I_{o}^{2}(\mathbf{H})\right]$ decreased to $0 \cdot 150,[R(F)=$ 0.081].* Final positional parameters of α and β (0.79) are listed in Table 1, and geometric data for α in Table 2. The less accurate values for β do not deviate significantly from the α values. The calculations were carried out with the XRAY system (1976).

[^0]Table 2. Geometric data for molecule α
Symmetry code: $X\left(n^{\mathrm{I}}\right)=X(n ; \bar{x}, \bar{y}, \bar{z})$.
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(4)-\mathrm{C}\left(4^{1}\right)$	$1.321(1)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$107.53(9)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.509(1)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$11 \mathrm{I} .93(8)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.521(1)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$110.87(8)$
$\mathrm{C}(3)-\mathrm{C}(1)$	$1.530(2)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.64(9)$
$\mathrm{C}(3)-\mathrm{O}(1)$	$1.429(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.65(8)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(1)$	$107.20(9)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}\left(4^{1}\right)$	$126.06(10)$

Equation of the $C(3)-C(4)-C\left(4^{I}\right)$ plane ($\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ orthonormal axes parallel to $\left.\mathbf{a}, \mathbf{b}, \mathbf{c}^{*}\right)$ and distances of atoms to plane in \AA

$$
\begin{gathered}
0.3992 X+0.7610 Y-0.5115 Z=0 \AA \\
\mathrm{C}(3) 0 \cdot 0 ; \mathrm{C}(4) 0 \cdot 0 ; \mathrm{O}(1) 0 \cdot 14 ; \mathrm{C}(1) 1 \cdot 18 ; \mathrm{C}(2)-1 \cdot 32
\end{gathered}
$$

The standard deviation in the distances is less than 1 in the last decimal place.

Fig. 2. Geometric data for the hydrogen-bonding system. The projection on to the best plane of the quadrangle is shown. Deviations from the plane (in \AA) are given in square brackets. $X^{\mathrm{II}}=X\left(\bar{x}, y, \bar{z}+\frac{1}{2}\right)$.

Discussion. In contradistinction to II trans B, the molecules in II trans A do not have a centrosymmetric conformation, as can be seen from the arrangement of the atoms approximately lying in the central ethylene planes.

The bond lengths and angles in II trans A have been discussed by Ruysink \& Vos (1974). The values for II trans B are comparable with those in the part of the II trans A molecule with a similar conformation. Differences in corresponding bond lengths are up to 0.008 \AA, and in angles up to $1 \cdot 8^{\circ}$.

Fig. 3. Projection of the structure along [010] on to the plane (010). The centers of the α molecules lie at height 0 (in the origin) and $\frac{1}{2}$, and those of β at $+\frac{1}{4}$ and $-\frac{1}{4}$.

Fig. 4. The structure seen along c.

Around the twofold axes there are quadrangles of O atoms with short $\mathrm{O} \cdots \mathrm{O}$ distances (Fig. 2) which have been assumed to represent hydrogen bonds and are given by dashed lines in Figs. 3 and 4. Fig. 3 depicts the connection of the molecules by hydrogen bonds in the ac plane, whereas Fig. 4 illustrates the way in which the hydrogen-bonding system is extended in the ($\mathbf{a}+\mathbf{b}$) and ($\mathbf{a}-\mathbf{b}$) directions, so that a three-dimensional network is formed. Fig. 2 shows that the shortest $\mathrm{O} \cdots \mathrm{O}$ distance occurs between atoms of type $\mathrm{O}(1)$ around which the largest deviations from tetrahedral angular values are observed. The hydrogen-bonding system is hardly affected by the disorder of β, as the O atoms of the superimposed molecules nearly coincide (Fig. 1). Because of the disorder the deformation density of α could not be determined accurately.

Part of this work has been supported by the Foundation for Fundamental Research of Matter with X-rays and Electron Rays (FOMRE) with financial aid
from the Netherlands Organization for the Advancement of Pure Research (ZWO). The computations have been performed at the Computer Center of the University of Groningen.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Ruysink, A. F. J. \& Vos, A. (1974). Acta Cryst. B30, 19972002.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wal, H. R. van der \& Vos, A. (1979). Acta Cryst. In the press.
XRAY system (1976). Dutch version of the XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 1732-1735

($1 S, 3 R, 4 S$)-1-Methyl-3-(4-methoxyphenoxymethyl)-4-phenylpiperidinium Chloride (FG4963): a Selective Inhibitor of Serotonin Uptake

By Peter G. Jones* and O. Kennard \dagger
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
and Alan S. Horn
Department of Pharmacy, University of Groningen, Groningen, The Netherlands

(Received 17 February 1979; accepted 27 March 1979)

Abstract

C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}^{+} . \mathrm{Cl}^{-}, M_{r}=347 \cdot 89\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=6.004$ (4), $b=11.398$ (10), $c=$ 28.587 (17) $\AA, U=1956 \AA^{3}, Z=4, D_{x}=1.180 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mu(\mathrm{Cu} K \alpha)=1.7 \mathrm{~mm}^{-1}$. The structure was refined to $R=0.041$ for 2520 unique reflexions. Absolute configurations at $\mathrm{N}(1)$ and $\mathrm{C}(4)$ are S, and at $\mathrm{C}(3) R$. Cl^{-}is hydrogen bonded to the positively charged N atom.

Introduction. The tricyclic antidepressants such as imipramine (Post, Kennard \& Horn, 1975) and chlorimipramine (Post \& Horn, 1977) inhibit the neuronal uptake of the biogenic amines noradrenaline (NA) and serotonin (5 -hydroxytryptamine, 5 -HT); this property may be related to their clinical mode of action (Horn,

[^1]1976). There is currently interest in developing more selective inhibitors of biogenic amine uptake in the hope of learning more about the neurochemical mechanisms involved in depressive states. A recently developed drug which has a more selective effect on $5-\mathrm{HT}$ than on NA uptake is ($3 R, 4 S$)-1-methyl-3-(4-methoxyphenoxy-methyl)-4-piperidine hydrochloride (I), which has the trivial name FG4963 (Lassen, Petersen, Kjellberg \& Olsson, 1975). We report here the structure of this compound.

(I)
© 1979 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic heavy-atom thermal parameters and parameters for the H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34338 (26 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Present address: Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstr. 4, 3400 Göttingen, Federal Republic of Germany.
 \dagger External Staff, Medical Research Council.

